SERVICE MANUAL # Cursor® 13 Single Stage Turbocharger Tier 4B (final) and Stage IV Engine See the following page for engine model numbers # **SERVICE MANUAL** F3HFE613A*B003 , F3HFE613B*B001 , F3HFE613B*B002 , F3HFE613D*B001 , F3HFE613D*B002 , F3HFE613G*B001 , F3HFE613G*B002 # Contents # INTRODUCTION | Engine | 10 | |--|-------| | [10.001] Engine and crankcase | 10.1 | | [10.101] Cylinder heads | 10.2 | | [10.102] Pan and covers | 10.3 | | [10.103] Crankshaft and flywheel | 10.4 | | [10.105] Connecting rods and pistons | 10.5 | | [10.106] Valve drive and gears | 10.6 | | [10.110] Balancer and damper | 10.7 | | [10.114] Pump drives | 10.8 | | [10.206] Fuel filters | 10.9 | | [10.218] Fuel injection system | 10.10 | | [10.250] Turbocharger and lines | 10.11 | | [10.254] Intake and exhaust manifolds and muffler | 10.12 | | [10.304] Engine lubrication system | 10.13 | | [10.400] Engine cooling system | 10.14 | | [10.408] Oil cooler and lines | 10.15 | | [10.414] Fan and drive | 10.16 | | [10.500] Selective Catalytic Reduction (SCR) exhaust treatment | 10.17 | | Electrical systems | 55 | | [55.010] Fuel injection system | 55.1 | | [55.012] Engine cooling system | 55.2 | | [55.013] Engine oil system | 55.3 | | [55.014] Engine intake and exhaust system | 55.4 | | [55.015] Engine control system | 55.5 | | [55.201] Engine starting system | 55.6 | | [55.202] Cold start aid | 55.7 | | [55.301] Alternator | 55.8 | |--|------| | [55.988] Selective Catalytic Reduction (SCR) electrical system | # **INTRODUCTION** # **Contents** # **INTRODUCTION** | Foreword - Important notice regarding equipment servicing | 3 | |---|---| | Safety rules | 4 | | Safety rules - Ecology and the environment | | | Torque - Minimum tightening torques for normal assembly | 6 | | Basic instructions - Shop and assembly | | ## Foreword - Important notice regarding equipment servicing All repair and maintenance work listed in this manual must be carried out only by qualified dealership personnel, strictly complying with the instructions given, and using, whenever possible, the special tools. Anyone who performs repair and maintenance operations without complying with the procedures provided herein shall be responsible for any subsequent damages. The manufacturer and all the organizations of its distribution chain, including - without limitation - national, regional, or local dealers, reject any responsibility for damages caused by parts and/or components not approved by the manufacturer, including those used for the servicing or repair of the product manufactured or marketed by the manufacturer. In any case, no warranty is given or attributed on the product manufactured or marketed by the manufacturer in case of damages caused by parts and/or components not approved by the manufacturer. The manufacturer reserves the right to make improvements in design and changes in specifications at any time without notice and without incurring any obligation to install them on units previously sold. Specifications, descriptions, and illustrative material herein are as accurate as known at time of publication but are subject to change without notice. In case of questions, refer to your CNH Sales and Service Networks. ### Safety rules #### Personal safety This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible death or injury. Throughout this manual and on machine decals, you will find the signal words DANGER, WARNING, and CAUTION followed by special instructions. These precautions are intended for the personal safety of you and those working with you. Read and understand all the safety messages in this manual before you operate or service the machine. A DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury. The color associated with DANGER is RED. WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury. The color associated with WARNING is ORANGE. CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury. The color associated with CAUTION is YELLOW. # FAILURE TO FOLLOW DANGER, WARNING, AND CAUTION MESSAGES COULD RESULT IN DEATH OR SERIOUS INJURY. #### **Machine safety** **NOTICE:** Notice indicates a situation which, if not avoided, could result in machine or property damage. The color associated with Notice is BLUE. Throughout this manual you will find the signal word Notice followed by special instructions to prevent machine or property damage. The word Notice is used to address practices not related to personal safety. #### Information **NOTE:** Note indicates additional information which clarifies steps, procedures, or other information in this manual. Throughout this manual you will find the word Note followed by additional information about a step, procedure, or other information in the manual. The word Note is not intended to address personal safety or property damage. ## Safety rules - Ecology and the environment Soil, air, and water quality is important for all industries and life in general. When legislation does not yet rule the treatment of some of the substances that advanced technology requires, sound judgment should govern the use and disposal of products of a chemical and petrochemical nature. Familiarize yourself with the relative legislation applicable to your country, and make sure that you understand this legislation. Where no legislation exists, obtain information from suppliers of oils, filters, batteries, fuels, anti-freeze, cleaning agents, etc., with regard to the effect of these substances on man and nature and how to safely store, use, and dispose of these substances. #### **Helpful hints** - Avoid the use of cans or other inappropriate pressurized fuel delivery systems to fill tanks. Such delivery systems may cause considerable spillage. - In general, avoid skin contact with all fuels, oils, acids, solvents, etc. Most of these products contain substances that may be harmful to your health. - · Modern oils contain additives. Do not burn contaminated fuels and or waste oils in ordinary heating systems. - Avoid spillage when you drain fluids such as used engine coolant mixtures, engine oil, hydraulic fluid, brake fluid, etc. Do not mix drained brake fluids or fuels with lubricants. Store all drained fluids safely until you can dispose of the fluids in a proper way that complies with all local legislation and available resources. - · Do not allow coolant mixtures to get into the soil. Collect and dispose of coolant mixtures properly. - The air-conditioning system contains gases that should not be released into the atmosphere. Consult an air-conditioning specialist or use a special extractor to recharge the system properly. - · Repair any leaks or defects in the engine cooling system or hydraulic system immediately. - Do not increase the pressure in a pressurized circuit as this may lead to a component failure. - Protect hoses during welding. Penetrating weld splatter may burn a hole or weaken hoses, allowing the loss of oils, coolant, etc. #### Battery recycling Batteries and electric accumulators contain several substances that can have a harmful effect on the environment if the batteries are not properly recycled after use. Improper disposal of batteries can contaminate the soil, groundwater, and waterways. CNH strongly recommends that you return all used batteries to a CNH dealer, who will dispose of the used batteries or recycle the used batteries properly. In some countries, this is a legal requirement. #### Mandatory battery recycling **NOTE:** The following requirements are mandatory in Brazil. Batteries are made of lead plates and a sulfuric acid solution. Because batteries contain heavy metals such as lead, CONAMA Resolution 401/2008 requires you to return all used batteries to the battery dealer when you replace any batteries. Do not dispose of batteries in your household garbage. Points of sale are obliged to: - · Accept the return of your used batteries - · Store the returned batteries in a suitable location - Send the returned batteries to the battery manufacturer for recycling # Torque - Minimum tightening torques for normal assembly #### **METRIC NON-FLANGED HARDWARE** | NOM.
SIZE | | | | | LOCKNUT
CL.8 | LOCKNUT
CL.10 | |--------------|------------------------|------------------------|------------------------|-------------------------|------------------------|---------------------| | | CLASS 8.8 | | CLASS 10.9 | | W/CL8.8 | W/CL10.9 | | | CLASS | 8 NU I | CLASS | <u>10 NU I</u> | BOLT | BOLT | | | UNPLATED | PLATED
W/ZnCr | UNPLATED | PLATED
W/ZnCr | | | | M4 | 2.2 N·m (19 lb
in) | 2.9 N·m (26 lb
in) | 3.2 N·m (28 lb
in) | 4.2 N·m (37 lb
in) | 2 N·m (18 lb in) | 2.9 N·m (26 lb in) | | M5 | 4.5 N·m (40 lb in) | 5.9 N·m (52 lb
in) | 6.4 N·m (57 lb
in) | 8.5 N·m (75 lb
in) | 4 N·m (36 lb in) | 5.8 N·m (51 lb in) | | M6 | 7.5 N·m (66 lb
in) | 10 N·m (89 lb
in) | 11 N·m (96 lb
in) | 15 N·m (128 lb
in) | 6.8 N·m (60 lb
in) | 10 N·m (89 lb in) | | M8 | 18 N·m (163 lb in) | 25 N·m (217 lb in) | 26 N·m (234 lb
in) | 35 N·m (311 lb in) | 17 N·m (151 lb in) | 24 N·m (212 lb in) | | M10 | 37 N·m (27 lb ft) | 49 N·m (36 lb
ft) | 52 N·m (38 lb ft) | 70 N·m (51 lb
ft) | 33 N·m (25 lb
ft) | 48 N·m (35 lb ft) | | M12 | 64 N·m (47 lb ft) | 85 N·m (63 lb
ft) | 91 N·m (67 lb ft) | 121 N·m (90 lb
ft) | 58 N·m (43 lb
ft) | 83 N·m (61 lb ft) | | M16 | 158 N·m (116 lb
ft) | 210 N·m
(155 lb ft) | 225 N·m (166 lb
ft) | 301 N·m (222 lb ft) | 143 N·m (106 lb
ft) | 205 N·m (151 lb ft) | | M20 | 319 N·m (235 lb
ft) | 425 N·m
(313 lb ft) | 440 N·m (325 lb
ft) | 587 N·m (433 lb
ft) | 290 N·m (214 lb
ft) | 400 N·m (295 lb ft) | | M24 | 551 N·m (410 lb
ft) | 735 N·m
(500 lb ft) | 762 N·m (560 lb
ft) | 1016 N·m
(750 lb ft) | 501 N·m (370 lb
ft) | 693 N·m (510 lb ft) | **NOTE:** M4 through M8 hardware torque specifications are shown in pound-inches. M10 through M24 hardware torque specifications are shown in pound-feet. #### **METRIC FLANGED HARDWARE** | NOM. | CLASS 8.8 | BOLT and | CLASS 10.9 BOLT and | | LOCKNUT | LOCKNUT | |--------|--------------------|----------------------|---------------------|----------------------|---------------------|---------------------| | SIZE | CLASS | CLASS 8 NUT | | CLASS 10 NUT | | CL.10 | | | | | | | W/CL8.8 | W/CL10.9 | | | | | | | BOLT | BOLT | | | UNPLATED | PLATED
W/ZnCr | UNPLATED | PLATED
W/ZnCr | | | | M4 | 2.4 N·m (21 lb | 3.2 N·m (28 lb | 3.5 N·m (31 lb | 4.6 N·m (41 lb | 2.2 N·m (19 lb | 3.1 N·m (27 lb | | IVI4 | in) | in) | in) | in) | in) | in) | | M5 | 4.9 N·m (43 lb | 6.5 N·m (58 lb | 7.0 N·m (62 lb | 9.4 N·m (83 lb | 4.4 N·m (39 lb | 6.4 N·m (57 lb | | IVIO | in) | in) | in) | in) | in) | in) | | M6 | 8.3 N·m (73 lb | 11 N·m (96 lb | 12 N·m (105 lb | 16 N·m (141 lb | 7.5 N·m (66 lb | 11 N·m (96 lb | | IVIO | in) | in) | in) | in) | in) | in) | | M8 | 20 N·m (179 lb | 27 N·m (240 lb | 29 N·m (257 lb | 39 N·m (343 lb | 18 N·m (163 lb | 27 N·m (240 lb | | IVIO | in) | in) | in) | in) | in) | in) | | M10 | 40 N·m (30 lb ft) | 54 N·m (40 lb
ft) | 57 N·m (42 lb ft) | 77 N·m (56 lb
ft) | 37 N·m (27 lb ft) | 53 N·m (39 lb ft) | | N440 | 70 N.m. (52 lb ft) | 93 N·m (69 lb | 100 N·m (74 lb | 134 N·m (98 lb | 62 N. m. (47 H. ft) | 04 N. m. (67 H. ft) | | M12 | 70 N·m (52 lb ft) | ft) | ft) | ft) | 63 N·III (47 ID IL) | 91 N·m (67 lb ft) | | M16 | 174 N·m (128 lb | 231 N·m (171 lb | 248 N·m (183 lb | 331 N·m (244 lb | 158 N·m (116 lb | 226 N·m (167 lb | | IVI IO | ft) | ft) | ft) | ft) | ft) | ft) | | M20 | 350 N·m (259 lb | 467 N·m (345 lb | 484 N·m (357 lb | 645 N·m (476 lb | 318 N·m (235 lb | 440 N·m (325 lb | | IVIZU | ft) | ft) | ft) | ft) | ft) | ft) | | M24 | 607 N·m (447 lb | 809 N·m (597 lb | 838 N·m (618 lb | 1118 N·m | 552 N·m (407 lb | | | IVIZ4 | ft) | ft) | ft) | (824 lb ft) | ft) | | #### **IDENTIFICATION** ## Metric Hex head and carriage bolts, classes 5.6 and up 20083680 1 - 1. Manufacturer's Identification - 2. Property Class #### Metric Hex nuts and locknuts, classes 05 and up 20083681 #### INTRODUCTION - 1. Manufacturer's Identification - 2. Property Class - 3. Clock Marking of Property Class and Manufacturer's Identification (Optional), i.e. marks **60** ° apart indicate Class 10 properties, and marks **120** ° apart indicate Class 8. #### **INCH NON-FLANGED HARDWARE** | NOMINAL
SIZE | SAE GRADE 5 BOLT and NUT | | SAE GRADE 8 BOLT and NUT | | LOCKNUT
GrB W/ Gr5
BOLT | LOCKNUT
GrC W/ Gr8
BOLT | |-----------------|---|--------------------------|--------------------------------------|--------------------------|-------------------------------|-------------------------------| | | UN-
PLATED
or
PLATED
SILVER | PLATED
W/ZnCr
GOLD | UN-
PLATED
or PLATED
SILVER | PLATED
W/ZnCr
GOLD | | | | 1/4 | 8 N·m (71 lb
in) | 11 N·m (97 lb in) | 12 N·m
(106 lb in) | 16 N·m
(142 lb in) | 8.5 N·m (75 lb in) | 12.2 N·m (109 lb
in) | | 5/16 | 17 N·m
(150 lb in) | 23 N·m
(204 lb in) | 24 N·m
(212 lb in) | 32 N·m
(283 lb in) | 17.5 N·m (155 lb in) | 25 N·m (220 lb
in) | | 3/8 | 30 N·m (22 lb
ft) | 40 N·m
(30 lb ft) | 43 N·m (31 lb
ft) | 57 N·m (42 lb
ft) | 31 N·m (23 lb ft) | 44 N·m (33 lb ft) | | 7/16 | 48 N·m (36 lb
ft) | 65 N·m
(48 lb ft) | 68 N·m (50 lb
ft) | 91 N·m (67 lb
ft) | 50 N·m (37 lb ft) | 71 N·m (53 lb ft) | | 1/2 | 74 N·m (54 lb
ft) | 98 N·m
(73 lb ft) | 104 N·m
(77 lb ft) | 139 N·m
(103 lb ft) | 76 N·m (56 lb ft) | 108 N·m (80 lb
ft) | | 9/16 | 107 N·m
(79 lb ft) | 142 N·m
(105 lb ft) | 150 N·m
(111 lb ft) | 201 N·m
(148 lb ft) | 111 N·m (82 lb ft) | 156 N·m (115 lb
ft) | | 5/8 | 147 N·m
(108 lb ft) | 196 N·m
(145 lb ft) | 208 N·m
(153 lb ft) | 277 N·m
(204 lb ft) | 153 N·m (113 lb
ft) | 215 N·m (159 lb
ft) | | 3/4 | 261 N·m
(193 lb ft) | 348 N·m
(257 lb ft) | 369 N·m
(272 lb ft) | 491 N·m
(362 lb ft) | 271 N·m (200 lb ft) | 383 N·m (282 lb
ft) | | 7/8 | 420 N·m
(310 lb ft) | 561 N·m
(413 lb ft) | 594 N·m
(438 lb ft) | 791 N·m
(584 lb ft) | 437 N·m (323 lb
ft) | 617 N·m (455 lb
ft) | | 1 | 630 N·m
(465 lb ft) | 841 N·m
(620 lb ft) | 890 N·m
(656 lb ft) | 1187 N·m
(875 lb ft) | 654 N·m (483 lb
ft) | 924 N·m (681 lb
ft) | **NOTE:** For Imperial Units, 1/4 in and 5/16 in hardware torque specifications are shown in pound-inches. 3/8 in through 1 in hardware torque specifications are shown in pound-feet. #### **INCH FLANGED HARDWARE** | NOM-
INAL
SIZE | SAE GRADE 5 BOLT and NUT | | SAE GRADE 8 BOLT an | | LOCKNUT
GrF W/ Gr5
BOLT | LOCKNUT
GrG W/ Gr8
BOLT | |----------------------|--------------------------|------------------------|------------------------|-------------------------|-------------------------------|-------------------------------| | | UNPLATED | PLATED | UNPLATED | PLATED | | | | | or PLATED | W/ZnCr | or PLATED | W/ZnCr | | | | | SILVER | GOLD | SILVER | GOLD | | | | 1/4 | 9 N·m (80 lb in) | 12 N·m (106 lb in) | 13 N·m (115 lb in) | 17 N·m (150 lb in) | 8 N·m (71 lb in) | 12 N·m (106 lb
in) | | 5/16 | 19 N·m (168 lb
in) | 25 N·m (221 lb in) | 26 N·m (230 lb in) | 35 N·m (310 lb in) | 17 N·m (150 lb
in) | 24 N·m (212 lb
in) | | 3/8 | 33 N·m (25 lb
ft) | 44 N·m (33 lb
ft) | 47 N·m (35 lb
ft) | 63 N·m (46 lb
ft) | 30 N·m (22 lb ft) | 43 N·m (32 lb ft) | | 7/16 | 53 N·m (39 lb
ft) | 71 N·m (52 lb
ft) | 75 N·m (55 lb
ft) | 100 N·m (74 lb
ft) | 48 N·m (35 lb ft) | 68 N·m (50 lb ft) | | 1/2 | 81 N·m (60 lb
ft) | 108 N·m (80 lb
ft) | 115 N·m (85 lb
ft) | 153 N·m
(113 lb ft) | 74 N·m (55 lb ft) | 104 N·m (77 lb
ft) | | 9/16 | 117 N·m (86 lb
ft) | 156 N·m
(115 lb ft) | 165 N·m
(122 lb ft) | 221 N·m
(163 lb ft) | 106 N·m (78 lb ft) | 157 N·m (116 lb
ft) | | 5/8 | 162 N·m (119 lb
ft) | 216 N·m
(159 lb ft) | 228 N·m
(168 lb ft) | 304 N·m
(225 lb ft) | 147 N·m (108 lb
ft) | 207 N·m (153 lb
ft) | | 3/4 | 287 N·m (212 lb
ft) | 383 N·m
(282 lb ft) | 405 N·m
(299 lb ft) | 541 N·m
(399 lb ft) | 261 N·m (193 lb
ft) | 369 N·m (272 lb
ft) | | 7/8 | 462 N·m (341 lb
ft) | 617 N·m
(455 lb ft) | 653 N·m
(482 lb ft) | 871 N·m
(642 lb ft) | 421 N·m (311 lb
ft) | 594 N·m (438 lb
ft) | | 1 | 693 N·m (512 lb
ft) | 925 N·m
(682 lb ft) | 979 N·m
(722 lb ft) | 1305 N·m
(963 lb ft) | 631 N·m (465 lb
ft) | 890 N·m (656 lb
ft) | #### **IDENTIFICATION** ## Inch Bolts and free-spinning nuts **Grade Marking Examples** | SAE Grade Identification | | | | | |--------------------------|-----------------------|---|---------------------------------------|--| | 1 | Grade 2 - No Marks | 4 | Grade 2 Nut - No Marks | | | 2 | Grade 5 - Three Marks | 5 | Grade 5 Nut - Marks 120 ° Apart | | | 3 | Grade 8 - Five Marks | 6 | Grade 8 Nut - Marks 60 ° Apart | | ## Inch Lock Nuts, All Metal (Three optional methods) 20090268 4 #### **Grade Identification** | Grade | Corner Marking Method (1) | Flats Marking Method (2) | Clock Marking Method (3) | |---------|-----------------------------|--------------------------|--------------------------| | Grade A | No Notches | No Mark | No Marks | | Grade B | One Circumferential Notch | Letter B | Three Marks | | Grade C | Two Circumferential Notches | Letter C | Six Marks | ## **Basic instructions - Shop and assembly** #### **Shimming** For each adjustment operation, select adjusting shims and measure the adjusting shims individually using a micrometer, then add up the recorded values. Do not rely on measuring the entire shimming set, which may be incorrect, or the rated value shown on each shim. #### Rotating shaft seals For correct rotating shaft seal installation, proceed as follows: - 1. Before assembly, allow the seal to soak in the oil it will be sealing for at least thirty minutes. - 2. Thoroughly clean the shaft and check that the working surface on the shaft is not damaged. - 3. Position the sealing lip facing the fluid. **NOTE:** With hydrodynamic lips, take into consideration the shaft rotation direction and position the grooves so that they will move the fluid towards the inner side of the seal. - 4. Coat the sealing lip with a thin layer of lubricant (use oil rather than grease). Fill the gap between the sealing lip and the dust lip on double lip seals with grease. - 5. Insert the seal in its seat and press down using a flat punch or seal installation tool. Do not tap the seal with a hammer or mallet. - 6. While you insert the seal, check that the seal is perpendicular to the seat. When the seal settles, make sure that the seal makes contact with the thrust element, if required. - 7. To prevent damage to the seal lip on the shaft, position a protective guard during installation operations. #### O-ring seals Lubricate the O-ring seals before you insert them in the seats. This will prevent the O-ring seals from overturning and twisting, which would jeopardize sealing efficiency. #### Sealing compounds Apply a sealing compound on the mating surfaces when specified by the procedure. Before you apply the sealing compound, prepare the surfaces as directed by the product container. #### Spare parts Only use CNH Original Parts or CNH Original Parts. Only genuine spare parts guarantee the same quality, duration, and safety as original parts, as they are the same parts that are assembled during standard production. Only CNH Original Parts or CNH Original Parts can offer this guarantee. When ordering spare parts, always provide the following information: - Machine model (commercial name) and Product Identification Number (PIN) - · Part number of the ordered part, which can be found in the parts catalog #### Protecting the electronic and/or electrical systems during charging and welding To avoid damage to the electronic and/or electrical systems, always observe the following practices: - 1. Never make or break any of the charging circuit connections when the engine is running, including the battery connections. - 2. Never short any of the charging components to ground. - 3. Always disconnect the ground cable from the battery before arc welding on the machine or on any machine attachment. - · Position the welder ground clamp as close to the welding area as possible. - If you weld in close proximity to a computer module, then you should remove the module from the machine. - Never allow welding cables to lie on, near, or across any electrical wiring or electronic component while you weld. - 4. Always disconnect the negative cable from the battery when charging the battery in the machine with a battery charger. **NOTICE:** If you must weld on the unit, you must disconnect the battery ground cable from the machine battery. The electronic monitoring system and charging system will be damaged if this is not done. 5. Remove the battery ground cable. Reconnect the cable when you complete welding. #### **A** WARNING Battery acid causes burns. Batteries contain sulfuric acid. Avoid contact with skin, eyes or clothing. Antidote (external): Flush with water. Antidote (eyes): flush with water for 15 minutes and seek medical attention immediately. Antidote (internal): Drink large quantities of water or milk. Do not induce vomiting. Seek medical attention immediately. Failure to comply could result in death or serious injury. W0111A #### Special tools The special tools that CNH suggests and illustrate in this manual have been specifically researched and designed for use with CNH machines. The special tools are essential for reliable repair operations. The special tools are accurately built and rigorously tested to offer efficient and long-lasting operation. By using these tools, repair personnel will benefit from: - · Operating in optimal technical conditions - · Obtaining the best results - · Saving time and effort - · Working in safe conditions # **SERVICE MANUAL** # **Engine** F3HFE613A*B003, F3HFE613B*B001, F3HFE613B*B002, F3HFE613D*B001, F3HFE613D*B002, F3HFE613G*B001, F3HFE613G*B002 # **Contents** # Engine - 10 | [10.001] Engine and crankcase | . 10.1 | |--|--------| | [10.101] Cylinder heads | . 10.2 | | [10.102] Pan and covers | . 10.3 | | [10.103] Crankshaft and flywheel | . 10.4 | | [10.105] Connecting rods and pistons | . 10.5 | | [10.106] Valve drive and gears | . 10.6 | | [10.110] Balancer and damper | . 10.7 | | [10.114] Pump drives | . 10.8 | | [10.206] Fuel filters | . 10.9 | | [10.218] Fuel injection system | 10.10 | | [10.250] Turbocharger and lines | 10.11 | | [10.254] Intake and exhaust manifolds and muffler | 10.12 | | [10.304] Engine lubrication system | 10.13 | | [10.400] Engine cooling system | 10.14 | | [10.408] Oil cooler and lines | 10.15 | | [10.414] Fan and drive | 10.16 | | [10.500] Selective Catalytic Reduction (SCR) exhaust treatment | 10.17 | Engine - 10 Engine and crankcase - 001 F3HFE613A*B003, F3HFE613B*B001, F3HFE613B*B002, F3HFE613D*B001, F3HFE613D*B002, F3HFE613G*B001, F3HFE613G*B002 # **Contents** # Engine - 10 # Engine and crankcase - 001 | TEC | HNICAL DATA | | |------|--|----| | | Engine Service limits | 3 | | SER | RVICE | | | | Engine Service instruction - Finding Top Dead Center (TDC) | 7 | | | Crankcase Liner - Measure | 9 | | | Liner - Remove | 13 | | | Liner - Install | 14 | | | Liner - Measure Protrusion | 15 | | | Under block - Remove | 16 | | | Under block - Install | 17 | | DIAC | GNOSTIC | | | | Engine | | | | Troubleshooting | 22 | # **Engine - Service limits** | Engine specifications | | |---|---| | Compression Ratio | 16.5 : 1 | | Bore | 135 mm (5.3 in) | | Stroke | 150 mm (5.9 in) | | Displacement | 12880 cm ³ | | Turbocharging | Inter-cooled, Direct injection | | Turbocharger type | Holset HE551 | | Lubrication | Forced by gear pump, relief valve single action | | Oil Pressure | , , , , , , , , , , , , , , , , , , , | | (Warm engine) | | | - Idling | 3 bar (43.5 psi) | | - Peak RPM | 4.5 bar (65.3 psi) | | Cooling | Liquid cooled | | Water pump control | Belt driven | | Thermostat (Start of opening) | 81 °C (177.8 °F) | | Intake valve timing | , , , | | - Opens before TDC | 17° | | - Closes after BDC | 30 ° | | Exhaust valve timing | | | - Opens before BDC | 50 ° | | - Closes after TDC | 9° | | Valve lash setting (when engine is cold) | | | - Intake | 0.4 mm (0.016 in) | | - Exhaust | 0.6 mm (0.024 in) | | Firing Order | 1 - 4 - 2 - 6 - 3 - 5 | | Cylinder block and piston | | | Bores for cylinder liners: | | | - Upper | 153.500 - 153.525 mm (6.043 - 6.044 in) | | - Lower | 152.000 - 152.025 mm (5.984 - 5.985 in) | | Cylinder liners external diameter: | | | - Upper | 153.461 - 153.486 mm (6.042 - 6.043 in) | | - Lower | 151.890 - 151.915 mm (5.980 - 5.981 in) | | Clearance between the OD of liners and ID of bores | | | - Upper | 0.014 - 0.039 mm (0.001 - 0.002 in) | | - Lower | 0.085 - 0.135 mm (0.003 - 0.005 in) | | Cylinder liner | | | - ID | 135.000 - 135.013 mm (5.315 - 5.315 in) | | - ID under a load of 800 N (179.8 lb) | 135.011 - 135.024 mm (5.315 - 5.316 in) | | - Protrusion | 0.045 - 0.075 mm (0.002 - 0.003 in) | | Pistons | | | - Measuring dimension | 18 mm (0.709 in) | | - External diameter (supplied as spares | 134.861 - 134.873 mm (5.309 - 5.310 in) | | - External diameter (production only) | 134.872 - 134.884 mm (5.310 - 5.310 in) | | - Pin bore | 54.010 - 54.018 mm (2.126 - 2.127 in) | | OD of piston - ID of cylinder liner | 0.127 - 0.151 mm (0.005 - 0.006 in) | | Piston protrusion | 0.12 - 0.42 mm (0.005 - 0.017 in) | | Piston pin diameter | 53.994 - 54.000 mm (2.126 - 2.126 in) | | Piston pin OD - pin bore | 0.010 - 0.024 mm (0.0004 - 0.0009 in) | | Piston ring grooves | | | - Тор | 3.100 - 3.120 mm (0.122 - 0.123 in) | | - Middle | 1.550 - 1.570 mm (0.061 - 0.062 in) | | - Bottom | 5.020 - 5.040 mm (0.198 - 0.198 in) | | Piston rings | | | - Combustion ring | 3.000 mm (0.118 in) | | - Intermediate ring | 1.470 - 1.500 mm (0.058 - 0.059 in) | |--|---| | - Oil control ring | 4.970 - 4.990 mm (0.196 - 0.196 in) | | Clearance between piston rings and grooves | | | - Combustion ring | 0.100 - 0.120 mm (0.004 - 0.005 in) | | - Intermediate ring | 0.050 - 0.100 mm (0.002 - 0.004 in) | | - Oil control ring | 0.030 - 0.070 mm (0.001 - 0.003 in) | | Piston ring end gap in cylinder liners | | | - Combustion ring | 0.40 - 0.50 mm (0.016 - 0.020 in) | | - Intermediate ring | 0.65 - 0.80 mm (0.026 - 0.031 in) | | - Oil control ring | 0.40 - 0.75 mm (0.016 - 0.030 in) | | Connecting rod | | | Small end bush housing | | | - Nominal | 59.000 - 59.030 mm (2.323 - 2.324 in) | | Big end bearing housing | , , , | | - Nominal | 94.000 - 94.030 mm (3.701 - 3.702 in) | | - Class 1 | 94.000 - 94.010 mm (3.701 - 3.701 in) | | - Class 2 | 94.011 - 94.020 mm (3.701 - 3.702 in) | | - Class 3 | 94.021 - 94.030 mm (3.702 - 3.702 in) | | Small end bush diameter | , , | | - Outside | 59.085 - 59.110 mm (2.326 - 2.327 in) | | - Inside | 54.019 - 54.035 mm (2.127 - 2.127 in) | | Big end bearing shell thickness | , , | | - Red | 1.965 - 1.975 mm (0.077 - 0.078 in) | | - Green | 1.976 - 1.985 mm (0.078 - 0.078 in) | | - Yellow | 1.986 - 1.995 mm (0.078 - 0.079 in) | | Clearance between small end bush and housing | 0.055 - 0.110 mm (0.002 - 0.004 in) | | Clearance between piston pin and bush | 0.019 - 0.041 mm (0.001 - 0.002 in) | | Connecting rod weight | | | - Class A | 4753 - 4795 g (167.7 - 169.1 oz) | | - Class B | 4796 - 4835 g (169.2 - 170.5 oz) | | - Class C | 4836 - 4875 g (170.6 - 172.0 oz) | | Maximum connecting rod axis misalignment | 0.08 mm (0.003 in) | | tolerance | , in the second | | Crankshaft | | | Main journals | | | - Rated value | 99.970 - 100.000 mm (3.9358 - 3.9370 in) | | - Class 1 | 99.970 - 99.979 mm (3.9358 - 3.9362 in) | | - Class 2 | 99.980 - 99.989 mm (3.9362 - 3.9366 in) | | - Class 3 | 99.990 - 100.000 mm (3.9366 - 3.9370 in) | | Crankpins | | | - Rated value | 89.970 - 90.000 mm (3.5421 - 3.5433 in) | | - Class 1 | 89.970 - 89.979 mm (3.5421 - 3.5425 in) | | - Class 2 | 89.980 - 89.989 mm (3.5425 - 3.5429 in) | | - Class 3 | 89.990 - 90.000 mm (3.5429 - 3.5433 in) | | Main bearing shells | | | - Red | 3.110 - 3.120 mm (0.1224 - 0.1228 in) | | - Green | 3.121 - 3.130 mm (0.1229 - 0.1232 in) | | - Yellow | 3.131 - 3.140 mm (0.1233 - 0.1236 in) | | Main bearing housings | | | - Rated value | 106.300 - 106.330 mm (4.1850 - 4.1862 in) | | - Class 1 | 106.300 - 106.309 mm (4.1850 - 4.1854 in) | | - Class 2 | 106.310 - 106.319 mm (4.1854 - 4.1858 in) | | - Class 3 | 106.320 - 106.330 mm (4.1858 - 4.1862 in) | | Clearance between bearing shells and main journals | , , | | Clearance between bearing shells and big ends | 0.050 - 0.090 mm (0.0020 - 0.0035 in) | | | | | Main journal, thrust bearing | 47.95 - 48.00 mm (1.888 - 1.890 in) | |--|--| | Main bearing housing, thrust bearing | 40.94 - 40.99 mm (1.612 - 1.614 in) | | Thrust bearing thickness | 3.38 - 3.43 mm (0.133 - 0.135 in) | | Crankshaft end play | 0.10 - 0.30 mm (0.0039 - 0.0118 in) | | Main journals and crankpins | | | - Alignment | Less than or equal to 0.025 mm (0.0010 in) | | - Ovalization | 0.010 mm (0.0004 in) | | - Taper | 0.010 mm (0.0004 in) | | Cylinder head and valve train | | | Valve guide housing in cylinder head | 15.980 - 15.997 mm (0.629 - 0.630 in) | | Valve guide | Totog Totog IIIII (croze cross III) | | - Inside diameter | 10.015 - 10.030 mm (0.394 - 0.395 in) | | - Outside diameter | 16.012 - 16.025 mm (0.630 - 0.631 in) | | Valve guides - housings in the cylinder head | 0.015 - 0.045 mm (0.0006 - 0.0018 in) | | Intake valves | 0.013 - 0.043 11111 (0.0000 - 0.0010 111) | | - Valve stem diameter | 9.960 - 9.975 mm (0.392 - 0.393 in) | | - Valve face angle | 60 ° | | Exhaust valves | | | - Valve stem diameter | 9.960 - 9.975 mm (0.392 - 0.393 in) | | - Valve face angle | 45° | | Clearance between valve guide and valve stem | 0.040 - 0.070 mm (0.0016 - 0.0028 in) | | Valve seat in cylinder head. | 0.040 - 0.070 11111 (0.0010 - 0.0020 111) | | Intake | 49.185 - 49.220 mm (1.936 - 1.938 in) | | Exhaust | 46.985 - 47.020 mm (1.850 - 1.851 in) | | Outside diameter of valve seat | 40.365 - 47.020 Hilli (1.650 - 1.651 Hi) | | - Intake | 49.260 - 49.275 mm (1.939 - 1.940 in) | | - Exhaust | 47.060 - 47.075 mm (1.8528 - 1.8533 in) | | Valve seat angle | 47.000 - 47.073 Hilli (1.0320 - 1.0333 HI) | | - Intake | 60 ° | | - Exhaust | 45 ° | | Recessing of the valves | | | - Intake | 0.54 - 0.85 mm (0.021 - 0.033 in) | | - Exhaust | 1.75 - 2.05 mm (0.069 - 0.081 in) | | Clearance between valve seat and cylinder head | 1.70 2.00 mm (0.000 0.001 m) | | - Intake | 0.040 - 0.090 mm (0.0016 - 0.0035 in) | | - Exhaust | 0.040 - 0.090 mm (0.0016 - 0.0035 in) | | Valve spring height | 0.000 mm (0.0010 - 0.0000 m) | | No load | 73.40 mm (2.890 in) | | 547 - 603 N (123.0 - 135.6 lb) load | 73.40 mm (2.890 m)
59 mm (2.323 in) | | 1041 - 1149 N (234.0 - 258.3 lb) load | 45 mm (1.772 in) | | Camshaft bushing housing in the cylinder head | 88.000 - 88.030 mm (3.465 - 3.466 in) | | Camshaft bearing journals | 82.950 - 82.968 mm (3.2657 - 3.2665 in) | | O.D. of the camshaft bushings | 88.153 - 88.183 mm (3.4706 - 3.4718 in) | | I.D. of the camshaft bushings | 83.018 - 83.085 mm (3.2684 - 3.2711 in) | | Clearance between bushings and housings in the | 0.123 - 0.183 mm (0.0048 - 0.0072 in) | | clearance between bushings and housings in the cylinder head | 0.123 - 0.103 Hilli (0.0040 - 0.0072 HI) | | Clearance between bushings and bearing journals | 0.050 - 0.135 mm (0.0020 - 0.0053 in) | | Cam lift | 0.000 0.100 11111 (0.0020 0.0000 111) | | - Intake lobe | 9.30 mm (0.366 in) | | - Exhaust lobe | 9.30 mm (0.366 in) | | - Injector lobe | 11.216 mm (0.442 in) | | Diameter of the rocker shaft | 41.984 - 42.000 mm (1.6529 - 1.6535 in) | | Bushing housing in the rocker arms | 7 11007 42.000 mm (1.0020 - 1.0000 m) | | - Intake | 45.000 - 45.016 mm (1.7717 - 1.7723 in) | | - Exhaust | 59.000 - 59.019 mm (2.3228 - 2.3236 in) | | - LAHQUƏL | 03.000 - 33.013 IIIII (2.3220 - 2.3230 III) | #### Engine - Engine and crankcase | - Injector | 46.000 - 46.016 mm (1.8110 - 1.8117 in) | |---|---| | Bushing outside diameter for rocker arms | | | - Intake | 45.090 - 45.130 mm (1.7752 - 1.7768 in) | | - Exhaust | 59.100 - 59.140 mm (2.3268 - 2.3283 in) | | - Injector | 46.066 - 46.091 mm (1.8136 - 1.8146 in) | | Bushing inside diameter for rocker arms | | | - Intake | 42.025 - 42.041 mm (1.6545 - 1.6552 in) | | - Exhaust | 56.030 - 56.049 mm (2.2059 - 2.2067 in) | | - Injector | 42.015 - 42.071 mm (1.6541 - 1.6563 in) | | Clearance between bushings and housings | | | - Intake | 0.074 - 0.130 mm (0.0029 - 0.0051 in) | | - Exhaust | 0.081 - 0.140 mm (0.0032 - 0.0055 in) | | - Injector | 0.050 - 0.091 mm (0.0020 - 0.0036 in) | | Clearance between bushings of rocker arms and | | | shaft | | | - Intake | 0.025 - 0.057 mm (0.0010 - 0.0022 in) | | - Exhaust | 0.025 - 0.057 mm (0.0010 - 0.0022 in) | | - Injector | 0.015 - 0.087 mm (0.0006 - 0.0034 in) | ## **Engine - Service instruction - Finding Top Dead Center (TDC)** #### For engines with a full flywheel housing - 1. Using the tool **380000137**, turn the engine flywheel **(1)** in the direction of normal rotation until you see the hole with two reference marks **(3)** through the inspection window at the bottom of the housing. - 2. Continue to turn the flywheel until the following hole with one reference mark (2) can be seen. This marks TDC of the number one cylinder. NHIL13ENG1171AA - 3. The exact position of piston number one at TDC is obtained when the tool **380000150** (1) can be inserted through the hole (2) of the flywheel speed sensor and engage the hole (3) in the engine flywheel (4). - 4. Remove the tool 380000150 (1). #### NHIL13ENG1231AA #### For engines with a partial flywheel housing - 1. Remove the flywheel speed sensor. - Use the tool 380002958 to rotate the engine flywheel (1) in the direction of normal rotation until you see the hole with two reference marks (3) through the hole for the flywheel speed sensor. - Continue to turn the flywheel until the following hole with one reference mark (2) can be seen. This marks TDC of the number one cylinder. NHIL13ENG1171AA - 4. The exact position of piston number one at TDC is obtained when the tool **380000150** (1) can be inserted through the hole (2) of the flywheel speed sensor and engage the hole (3) in the engine flywheel (4). - 5. Remove the tool 380000150 (1). NHIL13ENG1231AA ## **Crankcase Liner - Measure** #### **Prior operation:** Crankcase Liner - Remove (10.001) The internal diameter of the cylinder liner is checked for ovalization, taper, and wear, using a bore dial (1) centesimal gauge (2) previously set to ring gauge (3), which has a diameter of 135 mm (5.315 in). **NOTE:** If a **135 mm** (**5.315 in**) is not available, it is acceptable to use a micrometer. NHIL13ENG1188AA 2. The measurements have to be made on each single cylinder liner at three different heights and in two different positions perpendicular to each other as shown in the figure. NHIL13ENG1189AA Thank you so much for reading. Please click the "Buy Now!" button below to download the complete manual. After you pay. You can download the most perfect and complete manual in the world immediately. Our support email: ebooklibonline@outlook.com