

130 HYDRAULIC EXCAVATOR

SERVICE MARUAL

MELROE COMPANY

CONTENTS

10	EN	IGINE No. 0	of page
	11	STRUCTURE AND FUNCTION	11-1
	12	TESTING AND ADJUSTING	12-1
	13	DISASSEMBLY AND ASSEMBLY	13-1
20	PC	WER TRAIN	
	21	STRUCTURE AND FUNCTION	21-1
	23	DISASSEMBLY AND ASSEMBLY	23-1
	24	MAINTENANCE STANDARD	24-1
30	UN	IDERCARRIAGE	
	31	STRUCTURE AND FUNCTION	31-1
	33	DISASSEMBLY AND ASSEMBLY	33-1
	34	MAINTENANCE STANDARD	34-1
60	Н١	DRAULIC SYSTEM	
	61	STRUCTURE AND FUNCTION	61-1
	62	TESTING AND ADJUSTING	62-1
	63	DISASSEMBLY AND ASSEMBLY	63-1
	64	MAINTENANCE STANDARD	64-1
70	W	ORK EQUIPMENT	
	73	DISASSEMBLY AND ASSEMBLY	73-1
80	EL	ECTRICAL SYSTEM	
	81	STRUCTURE AND FUNCTION	81-1

NOTE: This machine has a 24 volt electrical system.

STANDARD TIGHTENING TORQUE

1. STANDARD TIGHTENING TORQUE OF BOLTS AND NUTS

The following charts give the standard tightening torques of bolts and nuts. Exceptions are given in sections of "Disassembly and Assembly".

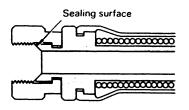
Thread diameter of bolt (mm)	Width across flat (mm)	kgm	Nm
6	10	1.35±0.15	13.2±1.4
8	· 13	3.2 ± 0.3	31.4 ± 2.9
10	17	6.7±0.7	65.7 ± 6.8
12	19	11.5±1.0	112±9.8
14	22	18.0±2.0	177±19
16	24	28.5±3	279±29
18	27	39±4	383±39
20	30	56±6	549±58
22	32	76±8	745±78
24	36	94.5±10	927±98
27	41	135±15	1320±140
30	46	175±20	1720±190
33	50	225 ± 25	2210±240
36	55	280±30	2750±290
39	60	335±35	3280±340

This torque table does not apply to the bolts with which nylon packings or other non-ferrous metal washers are to be used, or which require tightening to otherwise specified torque.

★ Nm (newton meter): 1Nm ≒ 0.1 kgm

2. TIGHTENING TORQUE OF SPLIT FLANGE BOLTS

Use these torques for split flange bolts.


Thread diameter of bolt	Width across flats	Tighteni	ng torque
(mm)	(mm)	kgm	Nm
10	14	6.7±0.7	65.7±6.8
12	17	11.5±1	112±9.8
16	22	28.5±3	279±29

FS0068

3. TIGHTENING TORQUE FOR NUTS OF FLARED

Use these torques for nut part of flared.

Thread diameter	Width across flats	Tighten	ning torque
of nut part (mm)	of nut part (mm)	kgm	Nm
14	19	2.5±0.5	24.5±4.9
18	24	5 ± 2	49±19.6
22	27	8±2	78.5 ± 19.6
24	32	14±3	137.3 ± 29.4
30	36	18±3	176.5 ± 29.4
33	41	20±5	196.1 ± 49
36	46	25±5	245.2±49
42	55	30±5	294.2±49

COATING MATERIALS

The recommended coating materials prescribed in Shop Manuals are listed below.

Nomenclature	code	Applications
	LT-1A	Used to apply rubber pads, rubber gaskets, and cork plugs.
Adhesives	LT-1B	Used to apply resin, rubber, metallic and non-metallic parts when a fast, strong seal is needed.
, and a	LT-2*	Preventing bolts, nuts and plugs from loosening and leaking oil.
	LT-3	Provides an airtight, electrically insulating seal. Used for aluminum surfaces.
	LG-1	Used with gaskets and packings to increase sealing effect.
Liquid gasket	LG-3	Heat-resistant gasket for precombustion chambers and exhaust piping.
Liquid gasket	LG-4	Used by itself on mounting surfaces on the final drive and transmission cases. (Thickness after tightening: 0.07 - 0.08 mm)
	LG-5	Used by itself to seal grease fittings, tapered screw fittings and tapered screw fittings in hydraulic circuits of less than 50 mm in diameter.
Antifriction compound (Lubricant including molybdenum disulfide)	LM-P	Applied to bearings and taper shafts to facilitate press-fitting and to prevent sticking, burning or rusting.
Grease (Lithium grease)	G2-LI	Applied to bearings, sliding parts and oil seals for lubrication, rust prevention and facilitation of assembling work.
Vaseline	_	Used for protecting battery electrode terminals from corrosion.

^{*}LT-2 is also called LOCTITE in the shop manuals.

ELECTRIC WIRE CODE

In the wiring diagrams, various colors and symbols are employed to indicate the thickness of wires.

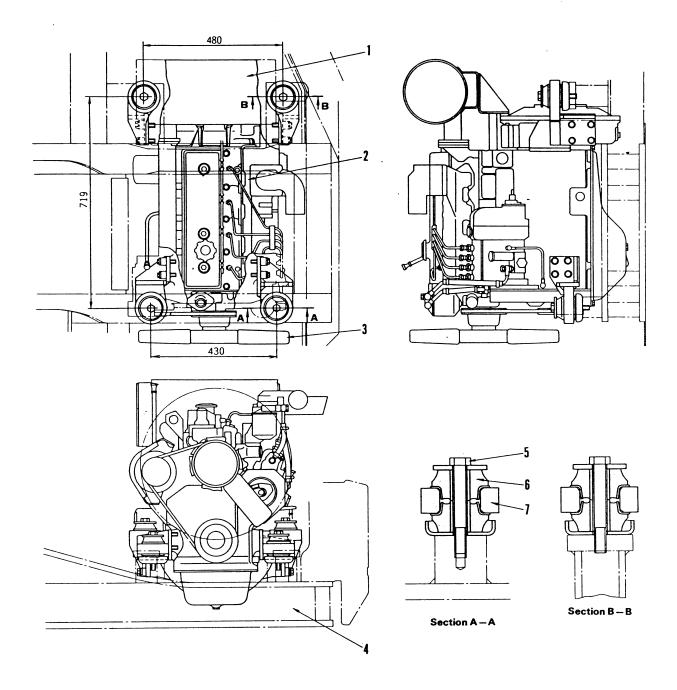
This wire code table will help you understand WIRING DIAGRAMS.

Example: 05WB indicates a cable having a nominal number 05 and white coating with black stripe.

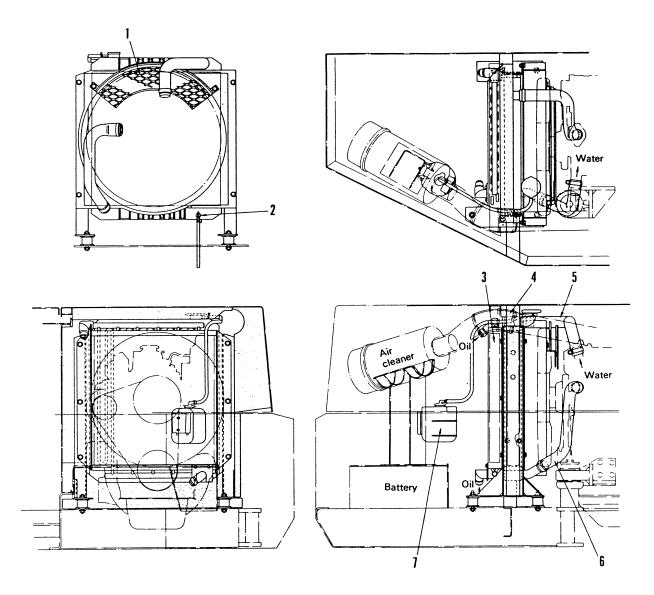
CLASSIFICATION BY THICKNESS

Nominal	Copper wire		Cable O.D.	Current rating	Applicable circuit		
number	Number strands	Dia. of strands (mm)	Cross section (mm²)	(mm)	(A)	Applicable circuit	
01	11	0.32	0.88	2.4	12	Starting, lighting, signal etc.	
02	26	0.32	2.09	3.1	20	Lighting, signal etc.	
05	65	0.32	5.23	4.6	37	Charging and signal	
15	84	0.45	13.36	7.0	59	Starting (Glow plug)	
40	85	0.80	42.73	11.4	135	Starting	
60	127	0.80	63.84	13.6	178	Starting	
100	217	0.80	109.1	17.6	230	Starting	

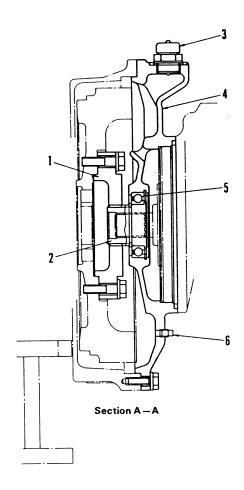
CLASSIFICATION BY COLOR AND CODE


Priority	Classificati	Circuits	Starting	Charging	Lighting	Signal	Instrument	Other
1	Primary	Code	В	w	R	G	Y	L
,	rimary	Color	Black	White	Red	Green	Yellow	Blue
2		Code	BW	WR	RW	GW	YR	LW
2		Color	Black & White	White & Red	Red & White	Green & White	Yellow & Red	Blue & White
3	Auxiliary	Code	BY	WB	RB	GR	YB	LR
3		Color	Black & Yellow	White & Black	Red & Black	Green & Red	Yellow & Black	Blue & Red
4	Auxiliary	Code	BR	WL	RY	GY	YG	LY
4		Color	Black & Red	White & Blue	Red & Yellow	Green & Yellow	Yellow & Green	Blue & Yellow
5	1	Code	-	WY	RG	GB	YL	LB
3		Color	-	White & Yellow	Red & Green	Green & Black	Yellow & Blue	Blue & Black
6		Code	_	WG	RL	GL	YW	
		Color	-	White & Green	Red & Blue	Green & Blue	Yellow & White	

ENGINE 11 STRUCTURE AND FUNCTION


Engine mount	
Radiator	11-3
PTO	11-4
Fuel tank and piping	
Engine control	11-6

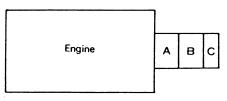
ENGINE MOUNT



- The engine is mounted crosswise at the rear of the upper structure. The front and rear mounts are supported by rubber pads which absorb shock.
- 1. Muffler
- 2. Engine
- 3. Radiator fan
- 4. Revolving frame
- 5. Mounting bolt
- 6. Rubber pads
- 7. Engine support

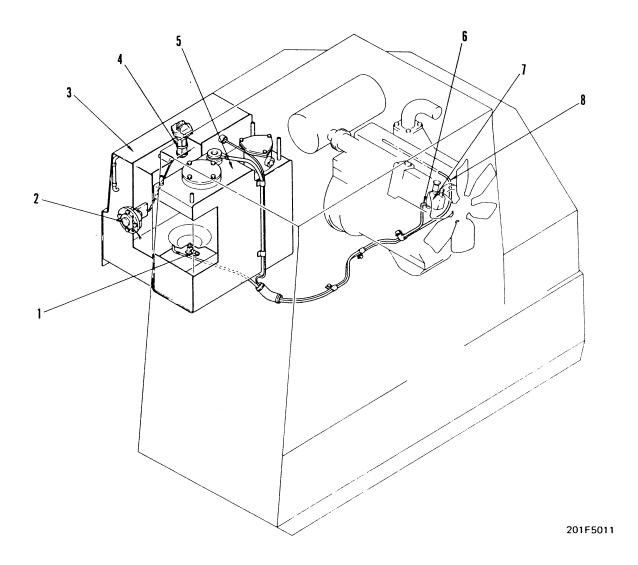
RADIATOR

- A model CD-3 corrugated fin type radiator core and the suction type of fan are used.
- The water level in the radiator can be visually checked through the sub-tank which is in front of the radiator.
- 1. Fan guard
- 2. Drain valve
- 3. Oil cooler
- 4. Radiator core
- 5. Inlet hose
- 6. Outlet hose
- 7. Sub-tank


201F5010

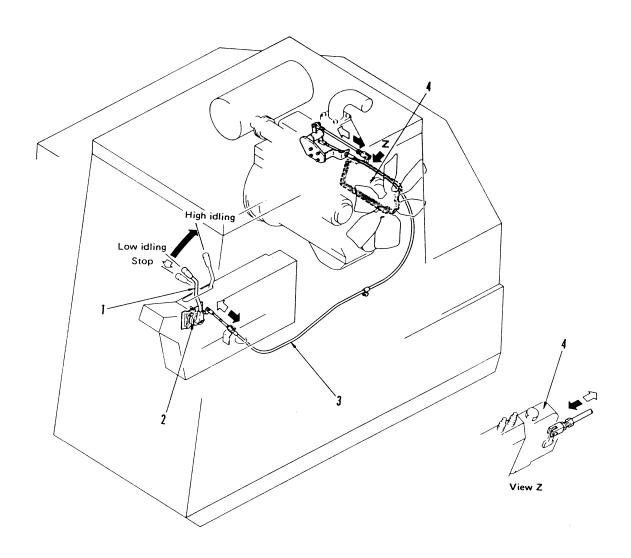
- The pumps are installed to the PTO case through the coupling at the rear of the flywheel housing of the engine.
- The pumps shown in the figure at right have the following functions.

Pomp A (Front main pump): Used for L.H. travel, arm low speed, swinging, boom high speed and service spool.


Pump B (Rear main pump): Used for R.H. travel, bucket, boom low speed and arm high speed.

Pump C (Charging pump): Used for driving the autodeceleration cylinder (if equipped), assisting the hydraulic pressure of the control valves and controlling the main pumps.

- 1. Coupling
- 2. Shaft
- 3. Breather
- 4. Case
- 5. Bearing
- 6. Oil level plug


FUEL TANK AND PIPING

- The fuel tank is installed together with the hydraulic tank as a unit.
- 1. Drain valve
- 2. Fuel level sensor
- 3. Fuel tank
- 4. Strainer

- 5. Hydraulic tank
- 6. Fuel supply hose
- 7. Fuel injection pump
- 8. Fuel return hose

ENGINE CONTROL

- 1. Engine control lever
- 2. Stopper
- 3. Cable
- 4. Fuel injection pump

ENGINE 12 TESTING AND ADJUSTING

Testing and adjusting data12-2
Tool list for testing and adjusting 12-3
Adjusting valve clearance 12-4
Measuring compression pressure 12-5
Adjusting fuel injection timing12-6
Testing and adjusting fan belt tension 12-7
Adjusting fuel control lever 12-8

When carrying out testing, adjusting or troubleshooting, stop the machine on level ground, apply the lock levers and block the tracks.

When working in groups, use agreed signals and do not allow unauthorized persons near the machine.

When checking the water level in the radiator wait for the water to cool. Do not remove the radiator cap while the water is hot. Boiling water may spurt out.

Be careful not to get caught in rotating parts.

TESTING AND ADJUSTING DATA

Applicable	machine model	130 4D95L-1			
Engi	ne model				
Item	Condition	Unit	Standard value	Permissible value	
	High idling speed		2250 – 2350		
Engine speed	Low idling speed	rpm	850 — 900		
	Rated speed		2100		
Exhaust gas color	Quick acceleration At high idling	Bosch scale	4.5 -	5.5 —	
	Intake valve		0.35		
Valve clearance (at cold)	Exhaust valve	mm	0.50		
Compression pressure	Oil temperature: 40 – 60°C	kg/cm²	30	21	
(SAE30 oil)	(Engine speed)	(rpm)	(320 – 360)	(320 – 360)	
Blow-by pressure (SAE30 oil)	Water temperature: Inside operating range At high idling	mmH₂O	50	100	
Oil pressure	At high idling		3.0 - 6.0	2.1	
(Water temperature:	At low idling (SAE30)	kg/cm ²	1.0	0.7	
Inside operating range)	At low idling (SAE10W)		0.8	0.7	
Oil temperature	All speed (oil in oil pan)	°c	80 — 110	120	
Fuel injection timing	B.T.D.C.	degree	16	16	
Fan belt tension (Alternator side)	Deflection when pushed with a force of 6 kg	mm	8	6 – 8	

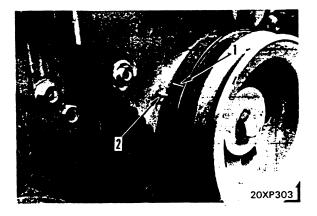
TOOL LIST FOR TESTING AND ADJUSTING

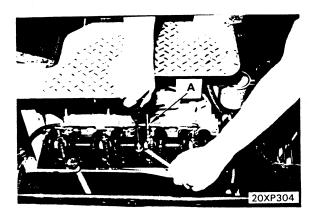
No.	Testing and measuring item	Fault finding tool	Part No.	Remarks
1	Engine speed	,	MEL-1316	Digital reading: 60—2,000 rpm (L range) 60—20,000 rpm (H range)
2	Water temperature, oil temperature		MEL-1316	-50 — 1,200°C
3	Lubrication oil pressure		MEL-1189	0-20 kg/cm ²
		Compression gauge	795-502-1590	0 – 70 kg/cm ²
4	Compression pressure	Adapter	795-414-1110	0 – 70 kg/ciii
5	Valve clearance	Feeler gauge		0.35, 0.50 mm

4000

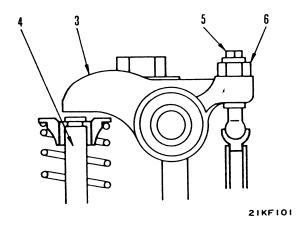
ADJUSTING VALVE CLEARANCE

Adjust clearance between valve stem and rocker arm with feeler gauge as follows.


Unit: mm


	Intake valve	Exhaust valve
At cold	0.35	0.5

- 1. Remove the cylinder head cover.
- 2. Rotate the crankshaft in the normal direction. While watching the movement of the intake valve of the No.4 cylinder, bring the No.1 cylinder into the top dead center position of the compression stroke and align the "1.4 TOP" mark on crankshaft pulley (1) with pointer (2).
- 3. When No.1 cylinder is top dead center of compression stroke, adjust the valve clearance for valves marked in the valve arrangement chart.
- 4. To adjust the valve clearance, loosen locknut (6) on adjustment screw (5), insert feeler gauge A corresponding to the specified clearance between valve stem (4) and rocker arm (3), and adjust the clearance with the adjustment screw until the thickness gauge can slide lightly.
- Rotate the crankshaft in the normal direction by one revolution and adjust the valve clearance for the remaining valves marked O.
- After the clearance is properly adjusted, tighten the locknut to secure the adjustment screw.


Skgm Locknut: 3.15 ± 0.35 kgm

- ★ Intake and exhaust valve clearances may be adjusted for each cylinder in the firing order by rotating the crankshaft 180° at a time in the normal direction.
- \star Firing order is 1-2-4-3.
- ★ After tightening locknut, check valve clearance again.

	Cylinder No.	1		2		3		4	
Front =	Intake valve	•		0		•		0	
	Exhaust valve		•		•		0		0

Thank you so much for reading. Please click the "Buy Now!" button below to download the complete manual.

After you pay.

You can download the most perfect and complete manual in the world immediately.

Our support email: ebooklibonline@outlook.com